Attributed network embedding has received much interest from the research community as most of the networks come with some content in each node, which is also known as node attributes. Existing attributed network approaches work well when the network is consistent in structure and attributes, and nodes behave as expected. But real world networks often have anomalous nodes. Typically these outliers, being relatively unexplainable, affect the embeddings of other nodes in the network. Thus all the downstream network mining tasks fail miserably in the presence of such outliers. Hence an integrated approach to detect anomalies and reduce their overall effect on the network embedding is required. Towards this end, we propose an unsupervised outlier aware network embedding algorithm (ONE) for attributed networks, which minimizes the effect of the outlier nodes, and hence generates robust network embeddings. We align and jointly optimize the loss functions coming from structure and attributes of the network. To the best of our knowledge, this is the first generic network embedding approach which incorporates the effect of outliers for an attributed network without any supervision. We experimented on publicly available real networks and manually planted different types of outliers to check the performance of the proposed algorithm. Results demonstrate the superiority of our approach to detect the network outliers compared to the state-of-the-art approaches. We also consider different downstream machine learning applications on networks to show the efficiency of ONE as a generic network embedding technique. The source code is made available at https://github.com/sambaranban/ONE.


翻译:由于大多数网络网节点都有某些内容,也称为节点属性,因此研究界对嵌入网络产生了极大兴趣。 现有的分级网络方法在网络结构和属性一致且节点行为如预期一样的情况下运作良好。 但真正的世界网络往往有异常节点。 这些外端网络相对难以解释,通常会影响网络中其他节点的嵌入。 因此,所有下游网络采矿任务在存在此类外端时都错误地失败。 因此,需要采用综合办法来发现异常现象并减少其对网络嵌入的总体影响。 为此,我们提议为分级网络建立一个不受监督的外意识网络嵌入算法( One) 。 这将最大限度地减少外端节点的效果,从而产生强大的网络嵌入。 我们调整并共同优化网络结构和属性中的其他损失功能。 根据我们的知识,这是第一个通用网络嵌入外部网络的方法,它包含外部网络在没有任何监督的情况下对分级网络的影响。 我们为此在可公开获取的局域网点上实验了一种不受监督的外网络嵌入式网络内嵌入(One) 。 我们用真实网络的高级网络和手动性网络的升级性测试了不同功能, 测试了网络的网络的功能, 演示了不同类型, 测试了网络的升级的网络的网络的功能, 演示了网络的升级的功能,以演示了网络的功能,以演示了网络的升级的功能,以演示了网络的功能,以展示了不同类型。 我们的升级了网络的升级的升级了网络的功能,, 演示了网络的升级了网络的功能, 测试了网络的升级了网络的升级了网络的功能,我们的升级了。我们的升级了网络的升级了网络的升级了网络的升级了网络的升级了。

6
下载
关闭预览

相关内容

近期必读的5篇 WSDM 2020【图神经网络(GNN)】相关论文
专知会员服务
57+阅读 · 2020年1月10日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
5+阅读 · 2018年5月21日
Arxiv
4+阅读 · 2018年2月19日
VIP会员
相关VIP内容
近期必读的5篇 WSDM 2020【图神经网络(GNN)】相关论文
专知会员服务
57+阅读 · 2020年1月10日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员