We propose a new STAcked and Reconstructed Graph Convolutional Networks (STAR-GCN) architecture to learn node representations for boosting the performance in recommender systems, especially in the cold start scenario. STAR-GCN employs a stack of GCN encoder-decoders combined with intermediate supervision to improve the final prediction performance. Unlike the graph convolutional matrix completion model with one-hot encoding node inputs, our STAR-GCN learns low-dimensional user and item latent factors as the input to restrain the model space complexity. Moreover, our STAR-GCN can produce node embeddings for new nodes by reconstructing masked input node embeddings, which essentially tackles the cold start problem. Furthermore, we discover a label leakage issue when training GCN-based models for link prediction tasks and propose a training strategy to avoid the issue. Empirical results on multiple rating prediction benchmarks demonstrate our model achieves state-of-the-art performance in four out of five real-world datasets and significant improvements in predicting ratings in the cold start scenario. The code implementation is available in https://github.com/jennyzhang0215/STAR-GCN.
翻译:我们提出了一个新的STAR-GCN(STAR-GCN)架构,以学习节点表达方式来提升推荐者系统中的性能,特别是在寒冷的起始场景中。STAR-GCN(STAR-GCN)使用一堆GCN编码解码器,加上中间监督来改进最后预测性能。与带有一热编码节点的图形革命矩阵完成模型不同,我们的STAR-GCN(STAR-GCN)将低维用户和项目潜在因素作为限制模型空间复杂度的投入。此外,我们的STAR-GCN(STAR-GCN)可以通过重建隐藏的输入节点嵌入新节点为新节点产生节嵌嵌嵌嵌嵌,这从根本上解决了冷冷的起始问题。此外,我们在培训基于GCN的模型将预测任务联系起来并提出避免这一问题的培训战略时发现了一个标签渗漏问题。多级评级预测基准的结果表明,我们的模型在五个真实世界数据集中达到了状态,并在预测冷热点启动情景中的评级方面有重大改进。代码的实施在 http://nyGs/TAR15中可以查阅。