We consider an expected-value ranking and selection problem where all k solutions' simulation outputs depend on a common uncertain input model. Given that the uncertainty of the input model is captured by a probability simplex on a finite support, we define the most probable best (MPB) to be the solution whose probability of being optimal is the largest. To devise an efficient sampling algorithm to find the MPB, we first derive a lower bound to the large deviation rate of the probability of falsely selecting the MPB, then formulate an optimal computing budget allocation (OCBA) problem to find the optimal static sampling ratios for all solution-input model pairs that maximize the lower bound. We devise a series of sequential algorithms that apply interpretable and computationally efficient sampling rules and prove their sampling ratios achieve the optimality conditions for the OCBA problem as the simulation budget increases. The algorithms are benchmarked against a state-of-the-art sequential sampling algorithm designed for contextual ranking and selection problems and demonstrated to have superior empirical performances at finding the MPB.
翻译:当所有 k 解决方案的模拟输出都依赖于共同的不确定输入模型时, 我们考虑一个预期值排名和选择问题。 鉴于输入模型的不确定性是通过一个概率简单化来捕捉到的, 我们定义了最有可能的最佳解决方案( MPB ), 其最佳可能性最大。 要设计一个高效的抽样算法来寻找 MPB, 我们首先得出一个与错误选择 MPB 概率的巨大偏差率相对应的下限, 然后制定一个最佳的计算预算分配( OCBA) 问题, 以找到所有解决方案- 投入模型的最佳静态采样比率, 从而最大限度地实现最低约束。 我们设计了一系列序列算法, 应用可解释和计算高效的采样规则, 并证明其采样比率随着模拟预算的增加而达到 OCBA 问题的最佳性条件 。 这些算法是参照为背景排序和选择问题设计的最先进的序列采样算法基准, 并证明在寻找 MPB 时有优的经验表现 。