In this paper we propose a method for nonparametric estimation and inference for heterogeneous bounds for causal effect parameters in general sample selection models where the initial treatment can affect whether a post-intervention outcome is observed or not. Treatment selection can be confounded by observable covariates while the outcome selection can be confounded by both observables and unobservables. The method provides conditional effect bounds as functions of policy relevant pre-treatment variables. It allows for conducting valid statistical inference on the unidentified conditional effect curves. We use a flexible semiparametric de-biased machine learning approach that can accommodate flexible functional forms and high-dimensional confounding variables between treatment, selection, and outcome processes. Easily verifiable high-level conditions for estimation and misspecification robust inference guarantees are provided as well.
翻译:在本文中,我们提出了一个方法,用于对一般抽样选择模型中因果参数的多种界限进行非参数估计和推断,初步处理可能影响是否观察到干预后的结果; 治疗选择可能由可观察的共同变数所混淆,而结果选择则可能由可观察和不可观察的两种因素所混淆; 这种方法提供有条件的效应界限,作为政策上与预处理前变量有关的功能; 允许对不明的有条件效应曲线进行有效的统计推断; 我们使用灵活的半参数脱偏差机器学习方法,可以兼顾灵活的功能形式以及治疗、选择和结果过程之间的高维度共振变数; 提供易于核查的高水平估计条件和错误的精确推断保证。