Privacy-preserving data analysis has become prevailing in recent years. In this paper, we propose a distributed group differentially private majority vote mechanism for the sign selection problem in a distributed setup. To achieve this, we apply the iterative peeling to the stability function and use the exponential mechanism to recover the signs. As applications, we study the private sign selection for mean estimation and linear regression problems in distributed systems. Our method recovers the support and signs with the optimal signal-to-noise ratio as in the non-private scenario, which is better than contemporary works of private variable selections. Moreover, the sign selection consistency is justified with theoretical guarantees. Simulation studies are conducted to demonstrate the effectiveness of our proposed method.
翻译:隐私保护数据分析近年来已变得盛行。 在本文中, 我们提出在分布式设置中, 分配式的标志选择问题采用分散式集体多数私人投票机制。 为此, 我们将迭接剥离功能应用于稳定性功能, 并使用指数机制恢复符号。 作为应用, 我们研究分布式系统中平均估计和线性回归问题的私人签名选择。 我们的方法恢复了支持和信号, 其最佳信号对噪音比率与非私人情景相同, 这比私人变量选择的当代工作要好。 此外, 签名选择的一致性有理论保证, 进行模拟研究, 以证明我们拟议方法的有效性 。