Adhesive joints are increasingly used in industry for a wide variety of applications because of their favorable characteristics such as high strength-to-weight ratio, design flexibility, limited stress concentrations, planar force transfer, good damage tolerance and fatigue resistance. Finding the optimal process parameters for an adhesive bonding process is challenging: the optimization is inherently multi-objective (aiming to maximize break strength while minimizing cost) and constrained (the process should not result in any visual damage to the materials, and stress tests should not result in failures that are adhesion-related). Real life physical experiments in the lab are expensive to perform; traditional evolutionary approaches (such as genetic algorithms) are then ill-suited to solve the problem, due to the prohibitive amount of experiments required for evaluation. In this research, we successfully applied specific machine learning techniques (Gaussian Process Regression and Logistic Regression) to emulate the objective and constraint functions based on a \emph{limited} amount of experimental data. The techniques are embedded in a Bayesian optimization algorithm, which succeeds in detecting Pareto-optimal process settings in a highly efficient way (i.e., requiring a limited number of extra experiments).
翻译:工业越来越多地使用粘合物进行各种各样的应用,因为它们具有有利的特征,例如,强度对重量比率高、设计灵活性、压力浓度有限、板力转移、良好的减压耐力和耐疲劳等。 找到粘合结合过程的最佳过程参数具有挑战性:优化本质上是多重目标(目的是最大限度地增加断裂强度,同时尽量减少成本)和限制(这一过程不应对材料造成任何视觉损害,压力测试不应造成与粘合有关的失败)。实验室中的实际生命物理实验非常昂贵;传统的进化方法(例如基因算法)随后不适合解决问题,因为评估所需的实验量太高。在这一研究中,我们成功地应用了特定的机器学习技术(Gaussian进程回归和物流倒退)来模仿基于实验数据量的客观和制约功能。这些技术植根于一种巴耶斯优化算法中,它成功地探测到Pareto-opimal过程设置,需要以高效的方式进行数量有限的实验(i.e.e.)。