Semi-supervised segmentation remains challenging in medical imaging since the amount of annotated medical data is often limited and there are many blurred pixels near the adhesive edges or low-contrast regions. To address the issues, we advocate to firstly constrain the consistency of samples with and without strong perturbations to apply sufficient smoothness regularization and further encourage the class-level separation to exploit the unlabeled ambiguous pixels for the model training. Particularly, in this paper, we propose the SS-Net for semi-supervised medical image segmentation tasks, via exploring the pixel-level Smoothness and inter-class Separation at the same time. The pixel-level smoothness forces the model to generate invariant results under adversarial perturbations. Meanwhile, the inter-class separation constrains individual class features should approach their corresponding high-quality prototypes, in order to make each class distribution compact and separate different classes. We evaluated our SS-Net against five recent methods on the public LA and ACDC datasets. The experimental results under two semi-supervised settings demonstrate the superiority of our proposed SS-Net, achieving new state-of-the-art (SOTA) performance on both datasets. The code is available at https://github.com/ycwu1997/SS-Net.


翻译:医疗成像中半监督的分解仍然具有挑战性,因为附加说明的医疗数据数量往往有限,而且在同一时间探索粘合边缘或低低调区域附近有许多模糊的像素。为了解决问题,我们主张首先限制样本与样本的一致性,以便实施足够平稳的正规化,并进一步鼓励等级分解,以便利用未贴标签的模糊像素进行模式培训。特别是在本文件中,我们提议采用SS-Net进行半监督的医疗图像分解任务,同时探索像素水平的平滑度和阶级间隔离。平流层平滑迫使模型在对抗性扰动下产生差异性结果。同时,各等级分解应限制个别等级特征接近相应的高品质原型,以便使每个等级的分发契约和不同的等级都达到。我们用SSS-Net和ACDC数据集的五种最新方法来评估我们的SS-Net。在两个半监督的环境下的实验结果显示我们SS-SO-com两种功能的优越性能。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员