Recently, a number of new Semi-Supervised Learning methods have emerged. As the accuracy for ImageNet and similar datasets increased over time, the performance on tasks beyond the classification of natural images is yet to be explored. Most Semi-Supervised Learning methods rely on a carefully manually designed data augmentation pipeline that is not transferable for learning on images of other domains. In this work, we propose a Semi-Supervised Learning method that automatically selects the most effective data augmentation policy for a particular dataset. We build upon the Fixmatch method and extend it with meta-learning of augmentations. The augmentation is learned in additional training before the classification training and makes use of bi-level optimization, to optimize the augmentation policy and maximize accuracy. We evaluate our approach on two domain-specific datasets, containing satellite images and hand-drawn sketches, and obtain state-of-the-art results. We further investigate in an ablation the different parameters relevant for learning augmentation policies and show how policy learning can be used to adapt augmentations to datasets beyond ImageNet.
翻译:最近,出现了一些新的半操作学习方法。随着图像网络和类似数据集的准确性随着时间的推移不断提高,除了自然图像分类之外的任务的绩效还有待于探索。大多数半操作学习方法依赖于一个精心手工设计的数据增强管道,不能从其它域的图像上转移来学习。在这项工作中,我们建议了一种半操作学习方法,为特定数据集自动选择最有效的数据增强政策。我们以固定匹配方法为基础,并通过扩增的元学习扩展该方法。增强是在分类培训之前的额外培训中学习的,并且使用了双级优化,以优化增强政策并最大限度地实现准确性。我们评估了我们关于两个特定域数据集的方法,其中包括卫星图像和手绘草图,并获得了最新的结果。我们进一步研究了与学习增强政策相关的不同参数,并展示了如何利用政策学习将扩增量调整到图像网络以外的数据集。