We extend PAC-Bayesian theory to generative models and develop generalization bounds for models based on the Wasserstein distance and the total variation distance. Our first result on the Wasserstein distance assumes the instance space is bounded, while our second result takes advantage of dimensionality reduction. Our results naturally apply to Wasserstein GANs and Energy-Based GANs, and our bounds provide new training objectives for these two. Although our work is mainly theoretical, we perform numerical experiments showing non-vacuous generalization bounds for Wasserstein GANs on synthetic datasets.
翻译:我们将PAC-Bayesian理论推广到基因模型,并为基于瓦塞斯坦距离和总变异距离的模型制定一般化界限。我们对瓦塞斯坦距离的第一个结果假定,试空间是相互连接的,而我们的第二个结果则利用了维度的减少。我们的结果自然适用于瓦塞斯坦GANs和能源基GANs,我们的界限为这两个模型提供了新的培训目标。虽然我们的工作主要是理论性的,但我们进行数字实验,显示瓦塞斯坦GANs在合成数据集上的非真空的通用界限。