We study oblivious sketching for $k$-sparse linear regression under various loss functions such as an $\ell_p$ norm, or from a broad class of hinge-like loss functions, which includes the logistic and ReLU losses. We show that for sparse $\ell_2$ norm regression, there is a distribution over oblivious sketches with $\Theta(k\log(d/k)/\varepsilon^2)$ rows, which is tight up to a constant factor. This extends to $\ell_p$ loss with an additional additive $O(k\log(k/\varepsilon)/\varepsilon^2)$ term in the upper bound. This establishes a surprising separation from the related sparse recovery problem, which is an important special case of sparse regression. For this problem, under the $\ell_2$ norm, we observe an upper bound of $O(k \log (d)/\varepsilon + k\log(k/\varepsilon)/\varepsilon^2)$ rows, showing that sparse recovery is strictly easier to sketch than sparse regression. For sparse regression under hinge-like loss functions including sparse logistic and sparse ReLU regression, we give the first known sketching bounds that achieve $o(d)$ rows showing that $O(\mu^2 k\log(\mu n d/\varepsilon)/\varepsilon^2)$ rows suffice, where $\mu$ is a natural complexity parameter needed to obtain relative error bounds for these loss functions. We again show that this dimension is tight, up to lower order terms and the dependence on $\mu$. Finally, we show that similar sketching bounds can be achieved for LASSO regression, a popular convex relaxation of sparse regression, where one aims to minimize $\|Ax-b\|_2^2+\lambda\|x\|_1$ over $x\in\mathbb{R}^d$. We show that sketching dimension $O(\log(d)/(\lambda \varepsilon)^2)$ suffices and that the dependence on $d$ and $\lambda$ is tight.
翻译:我们在各种损失函数下研究了$k$-稀疏线性回归的无意识素描,如$\ell_p$范数,或从包括逻辑和ReLU损失的广泛类似于铰链的损失函数。我们证明,对于稀疏的$\ell_2$范数回归,存在一个由$\Theta(k\log(d/k)/\varepsilon^2)$行组成的无意识素描分布,该分布在常数因子范围内是紧密的。这扩展到$\ell_p$损失,在上述上限中加上一个附加的$O(k\log(k/\varepsilon)/\varepsilon^2)$项。这证明了与相关的稀疏恢复问题的惊人分离,该问题是稀疏回归的重要特例。对于这个问题,在$\ell_2$范数下,我们观察到上界为$O(k \log (d)/\varepsilon + k\log(k/\varepsilon)/\varepsilon^2)$行,表明稀疏恢复比稀疏回归更容易素描。对于包括稀疏逻辑和稀疏ReLU回归在内的铰链损失函数下的稀疏回归,我们给出了首个已知均可实现$O(\mu^2 k\log(\mu nd/\varepsilon)/\varepsilon^2)$行的素描界,其中$\mu$是获取这些损失函数的相对误差界所需的自然复杂度参数。我们再次证明这种尺寸是紧密的,在较低的阶次和对$\mu$的依赖性之上。最后,我们表明类似的素描边界也可用于LASSO回归,这是稀疏回归的一种流行的凸松弛,其中人们的目标是在$x\in\mathbb{R}^d$上最小化$\|Ax-b\|_2^2+\lambda\|x\|_1$。我们表明,素描维度$O(\log(d)/(\lambda \varepsilon)^2)$足以满足,并且$d$和$\lambda$的依赖性是紧密的。