Anomaly detection in medical imaging is to distinguish the relevant biomarkers of diseases from those of normal tissues. Deep supervised learning methods have shown potentials in various detection tasks, but its performances would be limited in medical imaging fields where collecting annotated anomaly data is limited and labor-intensive. Therefore, unsupervised anomaly detection can be an effective tool for clinical practices, which uses only unlabeled normal images as training data. In this paper, we developed an unsupervised learning framework for pixel-wise anomaly detection in multi-contrast magnetic resonance imaging (MRI). The framework has two steps of feature generation and density estimation with Gaussian mixture model (GMM). A feature is derived through the learning of contrast-to-contrast translation that effectively captures the normal tissue characteristics in multi-contrast MRI. The feature is collaboratively used with another feature that is the low-dimensional representation of multi-contrast images. In density estimation using GMM, a simple but efficient way is introduced to handle the singularity problem which interrupts the joint learning process. The proposed method outperforms previous anomaly detection approaches. Quantitative and qualitative analyses demonstrate the effectiveness of the proposed method in anomaly detection for multi-contrast MRI.
翻译:在医学成像中,异常检测是一种有效的临床实践工具,它只使用未贴标签的正常正常图像作为培训数据。在本文中,我们开发了一个未经监督的学习框架,用于在多调调调磁磁共共共感成像(MRI)中检测像素的异常异常异常检测。该框架有两个步骤,用高斯混合混合物模型(GMM)进行特征生成和密度估计。通过学习对比到对调的翻译,有效地捕集多调聚雷达MRI的正常组织特征,从而有效地捕捉多调聚的MRI的正常组织特征。该特征与另一个特征是多调相图像的低维代表制。在使用MMMMM(MMMM)进行密度估计时,我们开发了一个不受监督的学习框架,用于多调调调频磁共振磁共振磁共振共振共振共振成像(MRI)中测出一个简单而高效的方法来处理中断联合学习过程的奇异性问题。一个特点被引入了一种简单但有效的方法,用以处理中断联合学习过程的奇点问题。一个特征问题。一个特点是拟议的方法,这是拟议的方法,用来超越了先前异常探测性检测方法,用来显示前的多异常检测、质检查方法,分析、质、质、质分析方法分析方法,用以分析、定性分析、定性分析、定性分析、定性分析、定性分析、定性方法。