In this paper, we address the problem of image anomaly detection and segmentation. Anomaly detection involves making a binary decision as to whether an input image contains an anomaly, and anomaly segmentation aims to locate the anomaly on the pixel level. Support vector data description (SVDD) is a long-standing algorithm used for an anomaly detection, and we extend its deep learning variant to the patch-based method using self-supervised learning. This extension enables anomaly segmentation and improves detection performance. As a result, anomaly detection and segmentation performances measured in AUROC on MVTec AD dataset increased by 9.8% and 7.0%, respectively, compared to the previous state-of-the-art methods. Our results indicate the efficacy of the proposed method and its potential for industrial application. Detailed analysis of the proposed method offers insights regarding its behavior, and the code is available online.
翻译:在本文中,我们处理图像异常探测和分解问题。 异常探测涉及对输入图像是否包含异常作出二进制决定, 异常分解旨在将异常点定位在像素水平上。 支持矢量数据描述( SVDD) 是用于异常点检测的长期算法, 我们使用自我监督的学习将其深层学习变量推广到补丁法。 此扩展使异常分解得以进行, 并改进检测性能。 结果, AUROC 测量的MVTec AD数据集异常探测和分解性能与以往最新方法相比分别增加了9.8%和7.0%。 我们的结果显示了拟议方法的功效及其在工业应用方面的潜力。 对拟议方法的详细分析提供了对其行为的深入了解, 代码可以在线查阅。