In this work a novel approach for weakly supervised object detection that incorporates pointwise mutual information is presented. A fully convolutional neural network architecture is applied in which the network learns one filter per object class. The resulting feature map indicates the location of objects in an image, yielding an intuitive representation of a class activation map. While traditionally such networks are learned by a softmax or binary logistic regression (sigmoid cross-entropy loss), a learning approach based on a cosine loss is introduced. A pointwise mutual information layer is incorporated in the network in order to project predictions and ground truth presence labels in a non-categorical embedding space. Thus, the cosine loss can be employed in this non-categorical representation. Besides integrating image level annotations, it is shown how to integrate point-wise annotations using a Spatial Pyramid Pooling layer. The approach is evaluated on the VOC2012 dataset for classification, point localization and weakly supervised bounding box localization. It is shown that the combination of pointwise mutual information and a cosine loss eases the learning process and thus improves the accuracy. The integration of coarse point-wise localizations further improves the results at minimal annotation costs.
翻译:在这项工作中,介绍了一种新颖的方法,用于低监管物体探测,其中纳入了点信息; 采用了完全进化的神经网络结构, 网络在其中学习每个对象级的过滤器; 由此产生的功能地图显示一个图像中的物体位置, 产生一个直观的分类激活图示。 虽然传统上这种网络是用软成像或二进制后勤回归( 类粒体交叉机体损失) 学习的, 采用基于连线损失的学习方法; 将一个点对准的相互信息层纳入网络, 以便在一个非分类嵌入空间中预测和地面真实存在标签。 因此, comsine损失可以用于这一非分类嵌入的表达器中。 除了整合图像级别说明外, 还展示了如何使用空间质导波层( 浮标集层) 整合点说明。 这种方法在 VOC2012 数据集中进行了评估, 用于分类、 点定位和低监管的约束框本地化。 它表明, 点的相互信息与 Cosine损失的标签组合可以使本地学习过程更加精确。