Labeling medical images depends on professional knowledge, making it difficult to acquire large amount of annotated medical images with high quality in a short time. Thus, making good use of limited labeled samples in a small dataset to build a high-performance model is the key to medical image classification problem. In this paper, we propose a deeply supervised Layer Selective Attention Network (LSANet), which comprehensively uses label information in feature-level and prediction-level supervision. For feature-level supervision, in order to better fuse the low-level features and high-level features, we propose a novel visual attention module, Layer Selective Attention (LSA), to focus on the feature selection of different layers. LSA introduces a weight allocation scheme which can dynamically adjust the weighting factor of each auxiliary branch during the whole training process to further enhance deeply supervised learning and ensure its generalization. For prediction-level supervision, we adopt the knowledge synergy strategy to promote hierarchical information interactions among all supervision branches via pairwise knowledge matching. Using the public dataset, MedMNIST, which is a large-scale benchmark for biomedical image classification covering diverse medical specialties, we evaluate LSANet on multiple mainstream CNN architectures and various visual attention modules. The experimental results show the substantial improvements of our proposed method over its corresponding counterparts, demonstrating that LSANet can provide a promising solution for label-efficient learning in the field of medical image classification.
翻译:标签医疗图像取决于专业知识,因此难以在短期内获得大量高质量的附加说明的医疗图像。因此,在小型数据集中妥善使用有限标签样本以建立高性能图像分类模型是医学图像分类问题的关键。在本文中,我们提议建立一个深入监督的图层选择性关注网络(LSANet),在特征级别和预测级别监督中全面使用标签信息。关于特征级监督,为了更好地融合低级别特征和高级别特征,我们提议了一个新型视觉关注模块,即层选择性关注(LSA),重点关注不同层次的特征选择。LSA引入了权重分配计划,可以在整个培训过程中动态地调整每个辅助分支的权重因素,以进一步加强深入监督的学习并确保其普遍性。关于预测级别监督,我们采用了知识协同增效战略,通过双向知识匹配促进所有监督部门之间的等级信息互动。我们使用公共数据集MedMedMNIST,这是包括不同医学专业在内的生物医学图像分类的大规模基准。我们评估了LSANet在多个主流结构中展示了我们所拟议的高效的图像模型模型,并展示了我们所推荐的实地研究结果。