In this paper, we develop bound-preserving discontinuous Galerkin (DG) methods for chemical reactive flows. There are several difficulties in constructing suitable numerical schemes. First of all, the density and internal energy are positive, and the mass fraction of each species is between 0 and 1. Secondly, due to the rapid reaction rate, the system may contain stiff sources, and the strong-stability-preserving explicit Runge-Kutta method may result in limited time step sizes. To obtain physically relevant numerical approximations, we apply the bound-preserving technique to the DG methods. For time discretization, we apply the modified Runge-Kutta/multi-step Patankar methods, which are explicit for the flux while implicit for the source. Such methods can handle stiff sources with relatively large time steps, preserve the positivity of the target variables, and keep the summation of the mass fractions to be 1. Finally, it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations. The positivity-preserving technique for DG method requires positive numerical approximations at the cell interfaces, while Patankar methods can keep the positivity of the pre-selected point-values of the target variables. To match the degree of freedom, we use $Q^k$ polynomials on rectangular meshes for problems in two space dimensions. To evolve in time, we first read the polynomials at the Gaussian points. Then suitable slope limiters can be applied to enforce the positivity of the solutions at those points, which can be preserved by the Patankar methods, leading to positive updated numerical cell averages. In addition, we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux.


翻译:在本文中, 我们为化学反应流开发了不连续的 Galerkin (DG) 方法。 在构建合适的数字方案时, 存在若干困难。 首先, 密度和内部能量是正数, 每个物种的质量部分在0到1之间。 其次, 由于快速反应率, 系统可能包含硬性源, 而坚固- 保存清晰的 Runge- Kutta 方法可能会导致有限的时间步骤大小 。 为了获得与物理相关的数字近似, 我们将约束保存技术应用到 DG 方法中。 对于时间分解, 我们应用了修改的 Runge- Kutta/ Multi- Step Patankar 方法, 这些方法在源的隐含时, 显示通畅通性源, 保存目标源, 保持目标变量的假设性, 并保持目标值的准确度。 最后, 将硬性 DG 方法和 Patankar 时间融合方法结合到 Patankar 中。 将硬性 硬性 的硬性方法用于 硬性 硬性 硬性 硬性 硬性 。

0
下载
关闭预览

相关内容

MASS:IEEE International Conference on Mobile Ad-hoc and Sensor Systems。 Explanation:移动Ad hoc和传感器系统IEEE国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/mass/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员