项目名称: 带跳非耦合正倒向随机微分方程的Crank-Nicolson数值解法研究
项目编号: No.11426152
项目类型: 专项基金项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 李洋
作者单位: 上海理工大学
项目金额: 3万元
中文摘要: 本项目拟研究带跳非耦合正倒向随机微分方程(简称FBSDEs) 的Crank-Nicolson类型数值解法: 通过布朗运动的Malliavin随机分析,结合求解正向随机微分方程数值方法,利用FBSDEs解和偏微分方程解的关系,得到求解非耦合FBSDEs的Crank-Nicolson格式的稳定性、收敛性和理论误差估计;提出求解带跳非耦合FBSDEs的Crank-Nicolson格式,并通过Lé过程的Malliavin随机分析和带跳正向随机微分方程数值方法,对其稳定性、收敛性和理论误差估计进行严格的分析;应用所提方法于一些重要的金融模型的模拟和计算。
中文关键词: 带跳非耦合正倒向随机微分方程;Lé 过程;Crank-Nicolson格式;误差估计;Malliavin 随机分析
英文摘要: In this project, we will study the Crank-Nicolson-type numerical methods for solving the decoupled forward backward stochastic differential equations (short for FBSDEs) with jumps: from Malliavin stochastic analysis for Brownian motion, combining the numerical methods for solving the forward stochastic differential equations, using the relationship between FBSDEs and PDEs, we will obtain the stability,convergence and error estimates of the Crank-Nicolson scheme for solving the decoupled FBSDEs; we will propose the Crank-Nicolson scheme for solving the decoupled FBSDEs with jumps, then using the Malliavin stochastic analysis for Lé processes we will obtain the stability, convergence and error estimates of the Crank-Nicolson numerical methods for solving the decoupled FBSDEs with jumps; Finally, we will apply the proposed methods to the simulation and computation of some important financial models.
英文关键词: decoupled FBSDEs with jumps;Lé process;Crank-Nicolson scheme;error estimates;Malliavin stochastic analysis