The property that the velocity $\boldsymbol{u}$ belongs to $L^\infty(0,T;L^2(\Omega)^d)$ is an essential requirement in the definition of energy solutions of models for incompressible fluids; it is, therefore, highly desirable that the solutions produced by discretisation methods are uniformly stable in the $L^\infty(0,T;L^2(\Omega)^d)$-norm. In this work, we establish that this is indeed the case for Discontinuous Galerkin (DG) discretisations (in time and space) of non-Newtonian implicitly constituted models with $p$-structure, in general, assuming that $p\geq \frac{3d+2}{d+2}$; the time discretisation is equivalent to a RadauIIA Implicit Runge-Kutta method. To aid in the proof, we derive Gagliardo-Nirenberg-type inequalities on DG spaces, which might be of independent interest
翻译:速度 $\ boldsymbol{u} 属于 $L infty( 0, T; L2 2(\ Omega) $) 的属性, 是定义不可压缩液体模型能源解决方案定义中的一项基本要求; 因此,非常可取的做法是, 由离散方法产生的解决方案在 $ infty( 0, T; L2 (\\\\ ) = omega) $- norm 美元中统一稳定。 在这项工作中, 我们确定, 非纽顿隐含形成的模型( 在时间和空间) 离散( DG) 的情况确实如此, 一般来说, 假设 $p$q \ frac{ 3d+2 +2} 美元; 时间离散相当于 RadauIIA 隐性运行- Kutta 方法 。 为了证明, 我们从Gagliardo- Nirenberg 类的GD 空间中得出了不相独立的不平等情况。