We propose a novel approach for monocular 3D object detection by leveraging local perspective effects of each object. While the global perspective effect shown as size and position variations has been exploited for monocular 3D detection extensively, the local perspectives has long been overlooked. We design a local perspective module to regress a newly defined variable named keyedge-ratios as the parameterization of the local shape distortion to account for the local perspective, and derive the object depth and yaw angle from it. Theoretically, this module does not rely on the pixel-wise size or position in the image of the objects, therefore independent of the camera intrinsic parameters. By plugging this module in existing monocular 3D object detection frameworks, we incorporate the local perspective distortion with global perspective effect for monocular 3D reasoning, and we demonstrate the effectiveness and superior performance over strong baseline methods in multiple datasets.
翻译:我们提出一种新颖的方法,通过利用每个物体的局部视角效应来探测单眼 3D 物体。 虽然以大小和位置变化为显示的全球视角效应已被广泛用于单眼 3D 探测,但当地视角长期以来一直被忽视。 我们设计了一个本地视角模块,将新定义的变量“关键对齐”作为本地形状扭曲的参数,以考虑当地视角,并从中得出对象深度和斜角。理论上,该模块并不依赖于物体图像中的像素大小或位置,因此独立于相机的内在参数。通过将这一模块插入现有的单眼 3D 物体探测框架,我们将本地视角扭曲与全球视角效果结合起来,用于单眼 3D 推理,我们在多个数据集中展示了相对于强基线方法的有效性和优异性。