In this paper, we study the convergence of adaptive mixed interior penalty discontinuous Galerkin method for H(curl)-elliptic problems. We first get the mixed model of H(curl)-elliptic problem by introducing a new intermediate variable. Then we discuss the continuous variational problem and discrete variational problem, which based on interior penalty discontinuous Galerkin approximation. Next, we construct the corresponding posteriori error indicator, and prove the contraction of the summation of the energy error and the scaled error indicator. At last, we confirm and illustrate the theoretical result through some numerical experiments.
翻译:在本文中,我们研究了适应性的混合内刑加列尔金混合法对H(curl)-灵巧问题的趋同性。我们首先通过引入一个新的中间变量获得H(curl)-灵巧问题的混合模型。然后我们讨论持续的变异问题和离散变异问题,这些问题以内刑不连续的加列尔金近似值为基础。接下来,我们构建相应的事后误差指标,并证明能源误差和缩放误差指标之比较的收缩。最后,我们通过一些数字实验来确认和说明理论结果。