Predicting the object's 6D pose from a single RGB image is a fundamental computer vision task. Generally, the distance between transformed object vertices is employed as an objective function for pose estimation methods. However, projective geometry in the camera space is not considered in those methods and causes performance degradation. In this regard, we propose a new pose estimation system based on a projective grid instead of object vertices. Our pose estimation method, dynamic projective spatial transformer network (DProST), localizes the region of interest grid on the rays in camera space and transforms the grid to object space by estimated pose. The transformed grid is used as both a sampling grid and a new criterion of the estimated pose. Additionally, because DProST does not require object vertices, our method can be used in a mesh-less setting by replacing the mesh with a reconstructed feature. Experimental results show that mesh-less DProST outperforms the state-of-the-art mesh-based methods on the LINEMOD and LINEMOD-OCCLUSION dataset, and shows competitive performance on the YCBV dataset with mesh data. The source code is available at https://github.com/parkjaewoo0611/DProST
翻译:从一个 RGB 图像中预测天体的 6D 形状是一项基本的计算机视觉任务。 一般来说, 变换的天顶之间的距离是用来作为提出估计方法的客观功能。 但是, 相机空间中的投影几何学没有在这些方法中加以考虑, 并导致性能退化。 在这方面, 我们提议以投影网格而不是物体的悬盘为基础, 建立一个新的表面估计系统。 我们的构成估计方法、 动态投影空间变压器网络( DProST ), 将摄像空间中的兴趣网区域本地化, 并用估计的外观转换成物体空间。 变换的电网既用作取样网, 也用作估计外观的新标准 。 此外, 由于 DProST 并不需要对象的悬浮图, 我们的方法可以在无线环境中使用, 以重塑的特性取代网格。 实验结果表明, 无色DProST 将 LINEMOD 和 LINEMOD- CLOCUSIOND 数据源码 显示YCBVVVQ/MSOD 的竞争性数据源码。