Binary stars undergo a variety of interactions and evolutionary phases, critical for predicting and explaining observed properties. Binary population synthesis with full stellar-structure and evolution simulations are computationally expensive requiring a large number of mass-transfer sequences. The recently developed binary population synthesis code POSYDON incorporates grids of MESA binary star simulations which are then interpolated to model large-scale populations of massive binaries. The traditional method of computing a high-density rectilinear grid of simulations is not scalable for higher-dimension grids, accounting for a range of metallicities, rotation, and eccentricity. We present a new active learning algorithm, psy-cris, which uses machine learning in the data-gathering process to adaptively and iteratively select targeted simulations to run, resulting in a custom, high-performance training set. We test psy-cris on a toy problem and find the resulting training sets require fewer simulations for accurate classification and regression than either regular or randomly sampled grids. We further apply psy-cris to the target problem of building a dynamic grid of MESA simulations, and we demonstrate that, even without fine tuning, a simulation set of only $\sim 1/4$ the size of a rectilinear grid is sufficient to achieve the same classification accuracy. We anticipate further gains when algorithmic parameters are optimized for the targeted application. We find that optimizing for classification only may lead to performance losses in regression, and vice versa. Lowering the computational cost of producing grids will enable future versions of POSYDON to cover more input parameters while preserving interpolation accuracies.
翻译:二进制恒星经过多种互动和进化阶段,对于预测和解释观察到的特性至关重要。二进制人口合成与全星体结构及进化模拟计算费用昂贵,需要大量大规模转移序列。最近开发的二进制人口合成代码POSYDON包含MESA二进制恒星模拟的网格,这些网格随后被内插用于模拟大规模二进制的大规模二进制星体。传统的模拟计算高密度的对流直线网格方法,对于更高二进制的电网来说是不可变的。计算一系列金属、旋转和偏心化参数的二进制人口合成计算是计算昂贵的。我们进一步采用新的主动学习算法,即心理计算法,在数据收集过程中使用机器学习来适应和迭代地选择目标模拟模型运行,从而形成一个定制的、高性能培训集集成的模型。我们测试一个玩具问题的心理镜像,在精确的精度分类和回归中只需要比常规或随机抽样的电网格更精确的精度计算,我们进一步采用更精细的计算方法来计算。我们在建立一个目标值的精细的内价计算,在建立动态电流的精度的精度的精度的精度的精度的精度的精度的计算中,在模拟的计算中,在建立一个动态的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的计算中, 4进度的计算方法上,而要显示的精度的精度的精度的精度的精度的精度的精度的精度的计算中进行度的计算中,在进行的计算中要能的精度的精度的精度的精度的精度的精度的精度的精度上显示的精度上进行的精度上进行的精度的精度的精度的精度上要的精度上, 进行到一个能到的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的