Place recognition is an important component for autonomous vehicles to achieve loop closing or global localization. In this paper, we tackle the problem of place recognition based on sequential 3D LiDAR scans obtained by an onboard LiDAR sensor. We propose a transformer-based network named SeqOT to exploit the temporal and spatial information provided by sequential range images generated from the LiDAR data. It uses multi-scale transformers to generate a global descriptor for each sequence of LiDAR range images in an end-to-end fashion. During online operation, our SeqOT finds similar places by matching such descriptors between the current query sequence and those stored in the map. We evaluate our approach on four datasets collected with different types of LiDAR sensors in different environments. The experimental results show that our method outperforms the state-of-the-art LiDAR-based place recognition methods and generalizes well across different environments. Furthermore, our method operates online faster than the frame rate of the sensor. The implementation of our method is released as open source at: https://github.com/BIT-MJY/SeqOT.
翻译:位置识别是自动飞行器实现环形闭合或全球定位的重要组成部分。 在本文中, 我们根据LIDAR传感器上获得的连续 3D LiDAR 扫描处理位置识别问题。 我们建议建立一个以变压器为基础的网络, 利用从LIDAR数据中生成的相近范围图像所提供的时间和空间信息。 它使用多尺度变压器, 以端到端的方式为LIDAR 范围图像的每个序列生成一个全球描述符。 在在线操作中, 我们的SeqOT通过匹配当前查询序列和存储在地图中的描述符找到相似的位置。 我们评估了我们在不同环境中使用不同类型LIDAR传感器收集的四套数据集的方法。 实验结果表明, 我们的方法超越了基于LIDAR 的数据的状态识别方法, 并且在不同环境中普遍化。 此外, 我们的方法在网上运行的速度比传感器的框架速率要快。 我们方法的实施作为开放源发布于 https://github.com/BIT- MY/SeqOTOT 。