We introduce an efficient optimization-based meta-learning technique for learning large-scale implicit neural representations (INRs). Our main idea is designing an online selection of context points, which can significantly reduce memory requirements for meta-learning in any established setting. By doing so, we expect additional memory savings which allows longer per-signal adaptation horizons (at a given memory budget), leading to better meta-initializations by reducing myopia and, more crucially, enabling learning on high-dimensional signals. To implement such context pruning, our technical novelty is three-fold. First, we propose a selection scheme that adaptively chooses a subset at each adaptation step based on the predictive error, leading to the modeling of the global structure of the signal in early steps and enabling the later steps to capture its high-frequency details. Second, we counteract any possible information loss from context pruning by minimizing the parameter distance to a bootstrapped target model trained on a full context set. Finally, we suggest using the full context set with a gradient scaling scheme at test-time. Our technique is model-agnostic, intuitive, and straightforward to implement, showing significant reconstruction improvements for a wide range of signals. Code is available at https://github.com/jihoontack/ECoP


翻译:我们引入了一种高效的基于优化的元学习技术,用于学习大规模隐含神经表征(INRs),我们的主要想法是设计一个在线选择上下文点,这可以大大减少在任何既定环境中进行元学习的记忆要求。通过这样做,我们预计会节省更多的记忆,从而(在一定的记忆预算中)能够延长每个信号的适应视野,从而通过减少近视和更为关键的高维信号学习,实现更好的元初始化。为了实施这种背景线条,我们的技术创新是三重。首先,我们提出了一个选择方案,根据预测错误,在每一个适应步骤上选择一个子子,从而导致早期建立信号全球结构的模型,并使以后的步骤能够捕捉到其高频细节。第二,我们通过将参数距离减少到在全局上训练的固态目标模型,来抵消环境上可能发生的信息损失。最后,我们建议使用在测试时使用带有梯度缩缩图的全局设置。我们的技术是模型化的,直观式的,直观式的、直观式的、可应用的AD/ADR的系统信号,以显示重大的重建。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
47+阅读 · 2022年10月2日
专知会员服务
30+阅读 · 2021年6月12日
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员