Real-time accurate solutions of large-scale complex dynamical systems are in critical need for control, optimization, uncertainty quantification, and decision-making in practical engineering and science applications, especially digital twin applications. This paper contributes in this direction a model-constrained tangent slope learning (mcTangent) approach. At the heart of mcTangent is the synergy of several desirable strategies: i) a tangent slope learning to take advantage of the neural network speed and the time-accurate nature of the method of lines; ii) a model-constrained approach to encode the neural network tangent slope with the underlying governing equations; iii) sequential learning strategies to promote long-time stability and accuracy; and iv) data randomization approach to implicitly enforce the smoothness of the neural network tangent slope and its likeliness to the truth tangent slope up second order derivatives in order to further enhance the stability and accuracy of mcTangent solutions. Rigorous results are provided to analyze and justify the proposed approach. Several numerical results for the transport equation, viscous Burgers equation, and Navier-Stokes equation are presented to study and demonstrate the robustness and long-time accuracy of the proposed mcTangent learning approach.
翻译:大型复杂动态系统的实时准确解决方案非常需要控制、优化、不确定性量化和决策,以实际工程和科学应用,特别是数字双应用程序。本文件有助于朝着这一方向采用模型限制的相向斜坡学习(mcTangent)方法。McTangent的核心是若干理想战略的协同作用:(一) 利用线条方法的神经网络速度和时间精确性,进行正向斜坡学习,以利用线条方法的神经网络速度和时间精确性;(二) 以模型限制的方法将神经网络正对流斜坡与基本治理方程式编码;(三) 为促进长期稳定性和准确性而制定顺序学习战略;以及(四) 数据随机化方法,以暗示地加强神经网络的平稳性、相向倾斜斜坡及其与正向直斜坡的相似性,从而进一步增强线线条方法的稳定性和准确性。提供了严格的结果,以分析和证明拟议方法的合理性。为运输方程、正对布尔格斯方程式和纳维-斯托克方方程所拟的稳健方程式提出了若干数字结果。