The proposed method in this paper proposes an end-to-end unsupervised semantic segmentation architecture DMSA based on four loss functions. The framework uses Atrous Spatial Pyramid Pooling (ASPP) module to enhance feature extraction. At the same time, a dynamic dilation strategy is designed to better capture multi-scale context information. Secondly, a Pixel-Adaptive Refinement (PAR) module is introduced, which can adaptively refine the initial pseudo labels after feature fusion to obtain high quality pseudo labels. Experiments show that the proposed DSMA framework is superior to the existing methods on the saliency dataset. On the COCO 80 dataset, the MIoU is improved by 2.0, and the accuracy is improved by 5.39. On the Pascal VOC 2012 Augmented dataset, the MIoU is improved by 4.9, and the accuracy is improved by 3.4. In addition, the convergence speed of the model is also greatly improved after the introduction of the PAR module.


翻译:本文中的拟议方法基于四个损失功能,提出了终端到终端不受监督的语义分割结构DMASA。框架使用Atrom空间金字池组合模块(ASPP)加强地貌提取。与此同时,设计了一个动态放大战略,以更好地捕捉多尺度背景信息。第二,引入了一个像素-成形改进模块(PAR),该模块可以在特性聚合后适应性地改进初始假标签,以获得高质量的假标签。实验显示,拟议的DSMA框架优于显著数据集的现有方法。在COCO 80数据集中,MIOU改进了2.0,精确度改进了5.39。在Pascal VOC 2012 增强的数据集中,MIOU改进了4.9,精确度改进了3.4。此外,在引入PAR模块后,该模型的趋同速度也大大改进。</s>

0
下载
关闭预览

相关内容

百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
10+阅读 · 2021年2月26日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关VIP内容
百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关基金
Top
微信扫码咨询专知VIP会员