In this paper, several row and column orthogonal projection methods are proposed for solving matrix equation $AXB=C$, where the matrix $A$ and $B$ are full rank or rank deficient and equation is consistent or not. These methods are iterative methods without matrix multiplication. It is theoretically proved these methods converge to the solution or least-squares solution of the matrix equation. Numerical results show that these methods are more efficient than iterative methods involving matrix multiplication for high-dimensional matrix.
翻译:暂无翻译