项目名称: 非线性Hamilton包含与反应扩散系统的同宿解
项目编号: No.11301297
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 陈鹏
作者单位: 三峡大学
项目金额: 23万元
中文摘要: Hamilton系统的同宿解是一个非常重要的研究方向,是近年来十分活跃的数学研究领域。深入探讨光滑与非光滑Hamilton 系统的同宿解问题,既能有力地推动非线性分析的发展,也将对数学、物理学、力学等学科的相应理论基础和研究方法产生重要的影响。本项目旨在综合运用微分方程和非线性分析的多个分支,包括微分方程定性理论、谱理论、变分方法、临界点理论、集值分析、非光滑分析、拓扑学、微分流形等,来研究Hamilton包含与反应扩散系统,重点是利用非光滑分析与新近建立的强不定泛函的临界点理论研究Hamilton包含与扩散系统的同宿解,发展处理微分包含与强不定非紧变分问题的新工具与新方法,发现这两类问题同宿解的产生机制和规律,利用临界点理论与动力系统的联系,获得非平凡同宿解的存在性及多重性结果并研究其解的渐近行为。本课题的完成将促进光滑与非光滑动力系统定性理论的发展。
中文关键词: Hamilton包含;反应扩散系统;同宿解;非光滑分析;强不定泛函
英文摘要: Homoclinic solutions of Hamiltonian system is a very important research area, which is very active in the field of mathematical research in recent years. We deeply study the homoclinic solutions for smooth and nonsmooth Hamiltonian system, which can greatly promote the development of nonlinear analysis, at the same time, it will greatly influence upon the disciplines of mathematics, physics, mechanics and other relevant theorys and research methods. The purpose of this project is to make comprehensive use of multiple branches of differential equations and nonlinear analysis, including the qualitative theory of differential equations, spectral theory, variational method, critical point theory, set-valued analysis, nonsmooth analysis,topology, differential manifold etc.,to investigate the existence of homoclinic solutions of Hamilton inclusions and reaction-diffusion systems. This project will investigate the Hamiltonian inclusions and reaction-diffusion system via nonsmooth analysis and critical point theory of strongly indefinite functional which was developed recently, develop new tools and new methods for differential inclusions and strongly indefinite noncompact variational problems, discover the mechanism and law of these two kinds of problems for homoclinic solutions, establish criteria for the existenc
英文关键词: Hamiltonian inclusions;Reaction-diffusion system;Homoclinic solutions;Nonsmooth analysis;Strongly indefinite functional