We introduce WyPR, a Weakly-supervised framework for Point cloud Recognition, requiring only scene-level class tags as supervision. WyPR jointly addresses three core 3D recognition tasks: point-level semantic segmentation, 3D proposal generation, and 3D object detection, coupling their predictions through self and cross-task consistency losses. We show that in conjunction with standard multiple-instance learning objectives, WyPR can detect and segment objects in point cloud data without access to any spatial labels at training time. We demonstrate its efficacy using the ScanNet and S3DIS datasets, outperforming prior state of the art on weakly-supervised segmentation by more than 6% mIoU. In addition, we set up the first benchmark for weakly-supervised 3D object detection on both datasets, where WyPR outperforms standard approaches and establishes strong baselines for future work.
翻译:我们引入了WyPR, 即一个受微弱监督的点云识别框架, 仅需要场景级级级标签作为监督。 WyPR 联合处理三个核心3D识别任务: 点级语义分解、 3D 建议生成和 3D 对象检测, 通过自我和跨任务一致性损失将预测合并在一起。 我们显示 WyPR 与标准的多功能学习目标一起, 在培训时间无法访问任何空间标签的情况下, 可以在点云数据中检测和分割对象 。 我们使用扫描网和 S3DIS 数据集来展示其有效性, 超过6% mIoU 的弱度监控分解前水平 。 此外, 我们还为两个数据集设定了第一个受微弱监督的 3D 对象检测基准, WyPR 在这两个数据集中都超越标准方法, 并为未来工作建立强大的基准 。