For robots navigating using only a camera, illumination changes in indoor environments can cause localization failures during autonomous navigation. In this paper, we present a multi-session visual SLAM approach to create a map made of multiple variations of the same locations in different illumination conditions. The multi-session map can then be used at any hour of the day for improved localization capability. The approach presented is independent of the visual features used, and this is demonstrated by comparing localization performance between multi-session maps created using the RTAB-Map library with SURF, SIFT, BRIEF, FREAK, BRISK, KAZE, DAISY and SuperPoint visual features. The approach is tested on six mapping and six localization sessions recorded at 30 minutes intervals during sunset using a Google Tango phone in a real apartment.


翻译:对于仅使用相机航行的机器人,室内环境的照明变化可能会在自主导航期间造成本地化失败。在本文中,我们提出了一个多部分直观SLM方法,用于绘制在不同照明条件下同一地点多种变异的地图。然后,多片地图可以在一天的任何时候用于提高本地化能力。所展示的方法与所使用的视觉特征无关,通过将使用RTAB-Map图书馆制作的多片地图与SURF、SIFT、BRIEF、FRECH、BRISK、KAZE、DAISY和SuperPoint视觉特征之间的本地化性能比较,可以证明这一点。该方法在日落期间用谷歌探戈电话在真实公寓中每30分钟记录6个本地化会议,对6个测绘和6个本地化会议进行了测试。

0
下载
关闭预览

相关内容

专知会员服务
87+阅读 · 2019年12月13日
【泡泡一分钟】变化环境下激光地图辅助视觉惯性定位
泡泡机器人SLAM
15+阅读 · 2019年5月22日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
12+阅读 · 2019年1月16日
【泡泡一分钟】利用多相机系统实现鲁棒的视觉里程计
泡泡机器人SLAM
6+阅读 · 2018年12月31日
【泡泡一分钟】CVI-SLAM –协同视觉惯性SLAM
泡泡机器人SLAM
21+阅读 · 2018年12月18日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
LIMO: Lidar-Monocular Visual Odometry
Arxiv
3+阅读 · 2018年7月19日
VIP会员
相关VIP内容
专知会员服务
87+阅读 · 2019年12月13日
相关资讯
【泡泡一分钟】变化环境下激光地图辅助视觉惯性定位
泡泡机器人SLAM
15+阅读 · 2019年5月22日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
12+阅读 · 2019年1月16日
【泡泡一分钟】利用多相机系统实现鲁棒的视觉里程计
泡泡机器人SLAM
6+阅读 · 2018年12月31日
【泡泡一分钟】CVI-SLAM –协同视觉惯性SLAM
泡泡机器人SLAM
21+阅读 · 2018年12月18日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
Top
微信扫码咨询专知VIP会员