Deep learning surrogate models have shown promise in solving partial differential equations (PDEs). Among them, the Fourier neural operator (FNO) achieves good accuracy, and is significantly faster compared to numerical solvers, on a variety of PDEs, such as fluid flows. However, the FNO uses the Fast Fourier transform (FFT), which is limited to rectangular domains with uniform grids. In this work, we propose a new framework, viz., geo-FNO, to solve PDEs on arbitrary geometries. Geo-FNO learns to deform the input (physical) domain, which may be irregular, into a latent space with a uniform grid. The FNO model with the FFT is applied in the latent space. The resulting geo-FNO model has both the computation efficiency of FFT and the flexibility of handling arbitrary geometries. Our geo-FNO is also flexible in terms of its input formats, viz., point clouds, meshes, and design parameters are all valid inputs. We consider a variety of PDEs such as the Elasticity, Plasticity, Euler's, and Navier-Stokes equations, and both forward modeling and inverse design problems. Geo-FNO is $10^5$ times faster than the standard numerical solvers and twice more accurate compared to direct interpolation on existing ML-based PDE solvers such as the standard FNO.
翻译:深度学习代金模型在解决部分差异方程( PDEs) 方面显示了希望。 其中, Fourier 神经操作器(FNO) 实现了良好的准确性, 与数字解算器相比, 在流体流等各种 PDE 上, 其速度要快得多。 然而, FNO 使用快速 Fleier 变换( FFT), 仅限于具有统一网格的矩形区域。 在这项工作中, 我们提出了一个新框架, 即 Geo- FNO, 以解决任意的地缘偏差的 PDE 。 Geo- FNO 学会将输入( 物理) 域( 可能不规则的) 变换成一个具有统一电网格的隐蔽空间。 FFFFT 的FNO 模型在潜伏空间中应用了。 由此形成的 Geo- FNO 模型既能计算FFFFFT 的计算效率, 也具有处理任意地理网格的灵活度。 我们的地理-FNO 在输入格式、点云、 meshes, 和设计参数参数上都是有效的投入投入。 我们认为, 的解解解解方法比Eal- fol- fol- fal- deal- demod- demod- demod- demod- develyl 和 Eld- demod- demodaldal 问题要快, 10 问题要快, 的公式是两种, 的比现有和直径方和直径方和直径等方程式更快。