We address the solution of large-scale Bayesian optimal experimental design (OED) problems governed by partial differential equations (PDEs) with infinite-dimensional parameter fields. The OED problem seeks to find sensor locations that maximize the expected information gain (EIG) in the solution of the underlying Bayesian inverse problem. Computation of the EIG is usually prohibitive for PDE-based OED problems. To make the evaluation of the EIG tractable, we approximate the (PDE-based) parameter-to-observable map with a derivative-informed projected neural network (DIPNet) surrogate, which exploits the geometry, smoothness, and intrinsic low-dimensionality of the map using a small and dimension-independent number of PDE solves. The surrogate is then deployed within a greedy algorithm-based solution of the OED problem such that no further PDE solves are required. We analyze the EIG approximation error in terms of the generalization error of the DIPNet and show they are of the same order. Finally, the efficiency and accuracy of the method are demonstrated via numerical experiments on OED problems governed by inverse scattering and inverse reactive transport with up to 16,641 uncertain parameters and 100 experimental design variables, where we observe up to three orders of magnitude speedup relative to a reference double loop Monte Carlo method.
翻译:我们用无限参数字段解决由部分差异方程式(PDE)管理的大规模巴伊萨最佳实验设计(OED)问题。OED问题旨在寻找感应地点,在解决巴伊西亚的反问题时,最大限度地增加预期获得的信息(EIG)。EIG的计算通常对基于PDE的OED问题来说是令人望而却步的。要将EIG(基于PDE的)参数到可观测的地图与衍生信息化的预测神经网络(DIPNet)替代网(DIPNet)相近,后者利用地图的几何、平滑和内在的低维度,利用少量和视维度的PDE解决方案。然后,将EIG的计算方法部署在基于贪婪算法的OED问题的解决方案中,因此不需要进一步的PDE解决方案。我们用DIPNet的通用错误来分析EG(基于PDE的)参数到可观测的参数,并显示其顺序相同。最后,该方法的效率和准确性和准确性通过数字实验显示地图的几维度,我们用100-40度的轨道的变变变变变变变的轨道测量度,我们用轨道测量测测测测测测测为16的轨道。