Bilevel Optimization has witnessed notable progress recently with new emerging efficient algorithms, yet it is underexplored in the Federated Learning setting. It is unclear how the challenges of Federated Learning affect the convergence of bilevel algorithms. In this work, we study Federated Bilevel Optimization problems. We first propose the FedBiO algorithm that solves the hyper-gradient estimation problem efficiently, then we propose FedBiOAcc to accelerate FedBiO. FedBiO has communication complexity $O(\epsilon^{-1.5})$ with linear speed up, while FedBiOAcc achieves communication complexity $O(\epsilon^{-1})$, sample complexity $O(\epsilon^{-1.5})$ and also the linear speed up. We also study Federated Bilevel Optimization problems with local lower level problems, and prove that FedBiO and FedBiOAcc converges at the same rate with some modification.


翻译:双级最佳化最近随着新的高效算法的出现而取得了显著进展,但在联邦学习环境中,这种算法的探索不足。目前还不清楚联邦学习的挑战如何影响双级算法的趋同。在这项工作中,我们研究了双级最佳化问题。我们首先提出了能有效解决高等级估计问题的美联储比奥克算法,然后我们建议美联储加速美联储比奥。美联储比奥的通信复杂性为O(epsilon ⁇ -1.5})美元,线性速度加快,而美联储比奥克公司达到通信复杂性$O(epsilon ⁇ )美元、样本复杂性$O(epsilon ⁇ -1.5})和线性速度加快。我们还研究了与地方较低级别问题有关的双级最佳化问题,并证明美联储和美联储以同样的速度汇合,并作了一些修改。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月31日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员