Continual Learning (CL) investigates how to train Deep Networks on a stream of tasks without incurring catastrophic forgetting. CL settings proposed in the literature assume that every incoming example is paired with ground-truth annotations. However, this clashes with many real-world applications: gathering labeled data, which is in itself tedious and expensive, becomes indeed infeasible when data flow as a stream and must be consumed in real-time. This work explores Weakly Supervised Continual Learning (WSCL): here, only a small fraction of labeled input examples are shown to the learner. We assess how current CL methods (e.g.: EWC, LwF, iCaRL, ER, GDumb, DER) perform in this novel and challenging scenario, in which overfitting entangles forgetting. Subsequently, we design two novel WSCL methods which exploit metric learning and consistency regularization to leverage unsupervised data while learning. In doing so, we show that not only our proposals exhibit higher flexibility when supervised information is scarce, but also that less than 25% labels can be enough to reach or even outperform SOTA methods trained under full supervision.
翻译:持续学习(CL) 调查如何在不引起灾难性的遗忘的情况下对深网络进行一系列任务的培训。 文献中提议的 CL 设置假定每个进取的示例都配有地面真相说明。 然而,这种与许多真实世界应用的冲突: 收集标签数据本身既乏味又昂贵, 当数据流本身是乏味和昂贵的, 当数据流作为流流而必须实时消耗时, 确实变得不可行。 这项工作探索了微弱的监视持续学习( WSCL ): 在这里, 向学习者展示的标签输入示例只有一小部分。 我们评估的是, 当前的 CL 方法( 例如: EWC、 LwF、 iCaRL、 ER、 GDumb、 DER) 是如何在这种新颖而具有挑战性的情况下运行的。 在这种情形中, 过度的纠缠会忘记。 随后, 我们设计了两种新的 WSCL 方法, 在学习的同时, 利用矩阵学习和一致性规范来利用非超强的数据 。 我们这样做表明, 我们的提议不仅在监管信息时表现出更高的灵活性, 而且在监督之下, 低于 25 % 标签能够达到完全的 。