We consider the question: how can you sample good negative examples for contrastive learning? We argue that, as with metric learning, learning contrastive representations benefits from hard negative samples (i.e., points that are difficult to distinguish from an anchor point). The key challenge toward using hard negatives is that contrastive methods must remain unsupervised, making it infeasible to adopt existing negative sampling strategies that use label information. In response, we develop a new class of unsupervised methods for selecting hard negative samples where the user can control the amount of hardness. A limiting case of this sampling results in a representation that tightly clusters each class, and pushes different classes as far apart as possible. The proposed method improves downstream performance across multiple modalities, requires only few additional lines of code to implement, and introduces no computational overhead.

4
下载
关闭预览

相关内容

自然语言处理领域中,判断两个单词是不是一对上下文词(context)与目标词(target),如果是一对,则是正样本,如果不是一对,则是负样本。采样得到一个上下文词和一个目标词,生成一个正样本(positive example),生成一个负样本(negative example),则是用与正样本相同的上下文词,再在字典中随机选择一个单词,这就是负采样(negative sampling)。

We present a self-supervised Contrastive Video Representation Learning (CVRL) method to learn spatiotemporal visual representations from unlabeled videos. Our representations are learned using a contrastive loss, where two augmented clips from the same short video are pulled together in the embedding space, while clips from different videos are pushed away. We study what makes for good data augmentation for video self-supervised learning and find both spatial and temporal information are crucial. We carefully design data augmentations involving spatial and temporal cues. Concretely, we propose a temporally consistent spatial augmentation method to impose strong spatial augmentations on each frame of the video while maintaining the temporal consistency across frames. We also propose a sampling-based temporal augmentation method to avoid overly enforcing invariance on the clips that are distant in a video. On the Kinetics-600 dataset, a linear classifier trained on the representations learned by CVRL achieves 70.4% top-1 accuracy with a 3D-ResNet-50 (R3D-50) backbone, outperforming ImageNet supervised pre-training by 15.7% and SimCLR unsupervised pre-training by 18.8% using the same inflated R3D-50. The performance of CVRL can be further improved to 72.6% with a larger R3D-50 (4$\times$ filters) backbone, significantly closing the gap between unsupervised and supervised video representation learning.

0
0
下载
预览

We investigate a strategy for improving the efficiency of contrastive learning of visual representations by leveraging a small amount of supervised information during pre-training. We propose a semi-supervised loss, SuNCEt, based on noise-contrastive estimation and neighbourhood component analysis, that aims to distinguish examples of different classes in addition to the self-supervised instance-wise pretext tasks. On ImageNet, we find that SuNCEt can be used to match the semi-supervised learning accuracy of previous contrastive approaches while using less than half the amount of pre-training and compute. Our main insight is that leveraging even a small amount of labeled data during pre-training, and not only during fine-tuning, provides an important signal that can significantly accelerate contrastive learning of visual representations. Our code is available online at github.com/facebookresearch/suncet.

0
0
下载
预览

The healthcare industry generates troves of unlabelled physiological data. This data can be exploited via contrastive learning, a self-supervised pre-training method that encourages representations of instances to be similar to one another. We propose a family of contrastive learning methods, CLOCS, that encourages representations across space, time, \textit{and} patients to be similar to one another. We show that CLOCS consistently outperforms the state-of-the-art methods, BYOL and SimCLR, when performing a linear evaluation of, and fine-tuning on, downstream tasks. We also show that CLOCS achieves strong generalization performance with only 25\% of labelled training data. Furthermore, our training procedure naturally generates patient-specific representations that can be used to quantify patient-similarity.

0
0
下载
预览

In this paper, we propose a method, named EqCo (Equivalent Rules for Contrastive Learning), to make self-supervised learning irrelevant to the number of negative samples in the contrastive learning framework. Inspired by the InfoMax principle, we point that the margin term in contrastive loss needs to be adaptively scaled according to the number of negative pairs in order to keep steady mutual information bound and gradient magnitude. EqCo bridges the performance gap among a wide range of negative sample sizes, so that we can use only a few negative pairs (e.g. 16 per query) to perform self-supervised contrastive training on large-scale vision datasets like ImageNet, while with almost no accuracy drop. This is quite a contrast to the widely used large batch training or memory bank mechanism in current practices. Equipped with EqCo, our simplified MoCo (SiMo) achieves comparable accuracy with MoCo v2 on ImageNet (linear evaluation protocol) while only involves 16 negative pairs per query instead of 65536, suggesting that large quantities of negative samples might not be a critical factor in contrastive learning frameworks.

0
0
下载
预览

Learning binary classifiers only from positive and unlabeled (PU) data is an important and challenging task in many real-world applications, including web text classification, disease gene identification and fraud detection, where negative samples are difficult to verify experimentally. Most recent PU learning methods are developed based on the conventional misclassification risk of the supervised learning type, and they require to solve the intractable risk estimation problem by approximating the negative data distribution or the class prior. In this paper, we introduce a variational principle for PU learning that allows us to quantitatively evaluate the modeling error of the Bayesian classifier directly from given data. This leads to a loss function which can be efficiently calculated without any intermediate step or model, and a variational learning method can then be employed to optimize the classifier under general conditions. In addition, the discriminative performance and numerical stability of the variational PU learning method can be further improved by incorporating a margin maximizing loss function. We illustrate the effectiveness of the proposed variational method on a number of benchmark examples.

0
0
下载
预览

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

0
13
下载
预览

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

0
16
下载
预览

While supervised learning has enabled great progress in many applications, unsupervised learning has not seen such widespread adoption, and remains an important and challenging endeavor for artificial intelligence. In this work, we propose a universal unsupervised learning approach to extract useful representations from high-dimensional data, which we call Contrastive Predictive Coding. The key insight of our model is to learn such representations by predicting the future in latent space by using powerful autoregressive models. We use a probabilistic contrastive loss which induces the latent space to capture information that is maximally useful to predict future samples. It also makes the model tractable by using negative sampling. While most prior work has focused on evaluating representations for a particular modality, we demonstrate that our approach is able to learn useful representations achieving strong performance on four distinct domains: speech, images, text and reinforcement learning in 3D environments.

0
5
下载
预览

Although reinforcement learning methods can achieve impressive results in simulation, the real world presents two major challenges: generating samples is exceedingly expensive, and unexpected perturbations can cause proficient but narrowly-learned policies to fail at test time. In this work, we propose to learn how to quickly and effectively adapt online to new situations as well as to perturbations. To enable sample-efficient meta-learning, we consider learning online adaptation in the context of model-based reinforcement learning. Our approach trains a global model such that, when combined with recent data, the model can be be rapidly adapted to the local context. Our experiments demonstrate that our approach can enable simulated agents to adapt their behavior online to novel terrains, to a crippled leg, and in highly-dynamic environments.

0
7
下载
预览
小贴士
相关论文
Rui Qian,Tianjian Meng,Boqing Gong,Ming-Hsuan Yang,Huisheng Wang,Serge Belongie,Yin Cui
0+阅读 · 2020年12月2日
Mahmoud Assran,Nicolas Ballas,Lluis Castrejon,Michael Rabbat
0+阅读 · 2020年12月1日
Aleksandr Ermolov,Aliaksandr Siarohin,Enver Sangineto,Nicu Sebe
0+阅读 · 2020年12月1日
Dani Kiyasseh,Tingting Zhu,David A. Clifton
0+阅读 · 2020年11月30日
Benjin Zhu,Junqiang Huang,Zeming Li,Xiangyu Zhang,Jian Sun
0+阅读 · 2020年11月30日
Hui Chen,Fangqing Liu,Yin Wang,Liyue Zhao,Hao Wu
0+阅读 · 2020年11月29日
Krishna Chaitanya,Ertunc Erdil,Neerav Karani,Ender Konukoglu
13+阅读 · 2020年6月18日
Ting Chen,Simon Kornblith,Mohammad Norouzi,Geoffrey Hinton
16+阅读 · 2020年2月13日
Aaron van den Oord,Yazhe Li,Oriol Vinyals
5+阅读 · 2019年1月22日
Ignasi Clavera,Anusha Nagabandi,Ronald S. Fearing,Pieter Abbeel,Sergey Levine,Chelsea Finn
7+阅读 · 2018年3月30日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
10+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
6+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
7+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
20+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
27+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
9+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
15+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
9+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
3+阅读 · 2018年4月15日
Top