In the context of principal components analysis (PCA), the bootstrap is commonly applied to solve a variety of inference problems, such as constructing confidence intervals for the eigenvalues of the population covariance matrix $\Sigma$. However, when the data are high-dimensional, there are relatively few theoretical guarantees that quantify the performance of the bootstrap. Our aim in this paper is to analyze how well the bootstrap can approximate the joint distribution of the leading eigenvalues of the sample covariance matrix $\hat\Sigma$, and we establish non-asymptotic rates of approximation with respect to the multivariate Kolmogorov metric. Under certain assumptions, we show that the bootstrap can achieve the dimension-free rate of ${\tt{r}}(\Sigma)/\sqrt n$ up to logarithmic factors, where ${\tt{r}}(\Sigma)$ is the effective rank of $\Sigma$, and $n$ is the sample size. From a methodological standpoint, our work also illustrates that applying a transformation to the eigenvalues of $\hat\Sigma$ before bootstrapping is an important consideration in high-dimensional settings.
翻译:在主要部件分析(PCA)方面,通常使用“靴子”来解决各种推论问题,例如为人口共变矩阵的成份值构建信任间隔,美元;然而,当数据为高维时,相对而言,很少有理论保证来量化靴子的性能。我们本文件的目的是分析“靴子”能够如何很好地接近于样品同源基体主要成份值($\hat\Sigma$)的联合分布,我们为多变量科尔莫戈洛夫衡量标准建立了非被动近似率。在某些假设下,我们表明“靴子”能够达到“$t{r}(\Sgmam)/\qrt nunt $的无维度率,最高到对值系数,其中${r{r ⁇ (\Sgmam)$的有效等级为$\Sigma$,而美元为样本大小。从方法角度上看,我们的工作还表明,在考虑高维值之前,将“美元”数字”/Shat\Sgmagmagmas之前,将一个重要值用于高维值。