项目名称: 基于多尺度各向异性方向导数核的图象角点检测和分类理论与方法
项目编号: No.61271295
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 无线电电子学、电信技术
项目作者: 水鹏朗
作者单位: 西安电子科技大学
项目金额: 78万元
中文摘要: 利用多尺度各向异性高斯方向导数核为工具,本项目研究灰度和向量值图像角点检测与分类理论、方法、算法。首先,研究多尺度各向异性高斯核与方向导数核的结构和性质;建立各种类型角点的多尺度各向异性方向导数表征;分析表征的噪声稳健性、几何变换的不变特征、以及角点分辨率。其次,把Harris和曲率尺度空间检测思想与角点的多尺度各向异性方向导数表征相结合,研究灰度图像的角点检测方法和算法。挖掘表征的稳健特征,建立灰度图像角点分类的框架并提出分类方法和算法。第三,引入向量值图像的多尺度形态学方向导数表征并提出角点检测与分类的向量值方法。研究彩色图像的自适应局部彩色变换技术,抽取向量值图像的彩色变化主分量图像,并应用灰度值图像的检测和分类方法到主分量图像得到快速有效的彩色图像角点检测与分类方法。最终,通过本项目的研究,建立基于多尺度各向异性方向导数表征的图像角点检测分类理论、方法和算法。
中文关键词: 各向异性高斯方向导数滤波器;角点检测;边缘检测;SAR图像分割;最小描述距离
英文摘要: Using the multiscale anisotropic Gaussian directional derivative kernels as the tool, this project systemically investigates the corner detection and classification theory, methods,and algorithms of grayscale and vector -valued images.First,study the structure and properties of multiscale anisotropic Gaussian kernels and directional derivative kernels, establish the anisotropic directional derivative representations of various corners, and analyze the noise robustness of the representations, their invariant features in geometric transforms, and their resolution to corner types. Second, combining the Harris and curvature scale space corner detection ideas with the multiscale anisotropic directional derivative representations of corners, develop corner detection methods of grayscale images. Exploiting the robust features of the representations, establish the framework of corner classification of grayscale images and propose efficient classification methods and algorithms.Third,introduing the concept of multiscale morphological directional derivatives of vector-valued images,develop new vector -value methods to detect and classify corners in color images. Research the adaptive local color transformation of color images, extract the principal component of color changes of the image, and apply the corner detection a
英文关键词: Anisotropic Gaussian directional derivative filter;corner detection;edge detection;SAR image segmentation;minimum description length