The vulnerability in the algorithm supply chain of deep learning has imposed new challenges to image retrieval systems in the downstream. Among a variety of techniques, deep hashing is gaining popularity. As it inherits the algorithmic backend from deep learning, a handful of attacks are recently proposed to disrupt normal image retrieval. Unfortunately, the defense strategies in softmax classification are not readily available to be applied in the image retrieval domain. In this paper, we propose an efficient and unsupervised scheme to identify unique adversarial behaviors in the hamming space. In particular, we design three criteria from the perspectives of hamming distance, quantization loss and denoising to defend against both untargeted and targeted attacks, which collectively limit the adversarial space. The extensive experiments on four datasets demonstrate 2-23% improvements of detection rates with minimum computational overhead for real-time image queries.


翻译:深度学习算法供应链中的脆弱性给下游的图像检索系统带来了新的挑战。在众多技术中,深度哈希正在变得流行起来。由于它继承了深度学习的算法后端,所以最近提出了一些攻击来破坏正常的图像检索。不幸的是,softmax分类中的防御策略不容易应用于图像检索领域。在本文中,我们提出了一种高效的无监督方案来识别哈明空间中的唯一对抗行为。特别地,我们从哈明距离、量化损失和去噪的角度设计了三个准则,以防御非有针对性和有针对性的攻击,从而共同限制对抗空间。在四个数据集上进行的广泛实验表明,实时图像查询的检测率提高了2-23%,而计算开销最小。

0
下载
关闭预览

相关内容

从20世纪70年代开始,有关图像检索的研究就已开始,当时主要是基于文本的图像检索技术(Text-based Image Retrieval,简称TBIR),利用文本描述的方式描述图像的特征,如绘画作品的作者、年代、流派、尺寸等。到90年代以后,出现了对图像的内容语义,如图像的颜色、纹理、布局等进行分析和检索的图像检索技术,即基于内容的图像检索(Content-based Image Retrieval,简称CBIR)技术。CBIR属于基于内容检索(Content-based Retrieval,简称CBR)的一种,CBR中还包括对动态视频、音频等其它形式多媒体信息的检索技术。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
126+阅读 · 2020年9月6日
Arxiv
12+阅读 · 2020年6月20日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员