Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples under the condition that some output classes are unknown during supervised learning. To address this challenging task, GZSL leverages semantic information of the seen (source) and unseen (target) classes to bridge the gap between both seen and unseen classes. Since its introduction, many GZSL models have been formulated. In this review paper, we present a comprehensive review on GZSL. Firstly, we provide an overview of GZSL including the problems and challenges. Then, we introduce a hierarchical categorization for the GZSL methods and discuss the representative methods in each category. In addition, we discuss the available benchmark data sets and applications of GZSL, along with a discussion on the research gaps and directions for future investigations.
翻译:通用零光学习(GZSL)旨在培训数据样本分类模式,条件是某些产出类别在监督学习期间不为人知。为了应对这一具有挑战性的任务,GZSL利用所见(源)和不可见(目标)类的语义信息弥合已见(源)和未见(目标)类之间的差距。自引入以来,已经制定了许多GZSL模型。在本审查文件中,我们提交了关于GZSL的全面审查。首先,我们概述了GZSL, 包括问题和挑战。然后,我们对GZSL方法进行等级分类,并讨论了每个类别的代表性方法。此外,我们讨论了现有的基准数据集和GZSL的应用,同时讨论了研究差距和未来调查方向。