Zero-shot learning (ZSL) aims at understanding unseen categories with no training examples from class-level descriptions. To improve the discriminative power of zero-shot learning, we model the visual learning process of unseen categories with an inspiration from the psychology of human creativity for producing novel art. We relate ZSL to human creativity by observing that zero-shot learning is about recognizing the unseen and creativity is about creating a likable unseen. We introduce a learning signal inspired by creativity literature that explores the unseen space with hallucinated class-descriptions and encourages careful deviation of their visual feature generations from seen classes while allowing knowledge transfer from seen to unseen classes. Empirically, we show consistent improvement over the state of the art of several percents on the largest available benchmarks on the challenging task or generalized ZSL from a noisy text that we focus on, using the CUB and NABirds datasets. We also show the advantage of our approach on Attribute-based ZSL on three additional datasets (AwA2, aPY, and SUN).


翻译:零点学习( ZSL) 旨在理解隐蔽的类别,而没有来自课堂描述的培训实例。 为了提高零点学习的歧视性力量,我们用人类创造心理学的灵感来模拟隐蔽类别的视觉学习过程。 我们把 ZSL 与人类的创造力联系起来,我们观察到,零点学习是承认隐蔽的,而创造力是创造一种可亲近的无形。 我们引入了由创意文献所启发的学习信号,它以幻觉类描述来探索隐蔽的空间,鼓励其视觉特征世代从可见的班级中谨慎偏离,同时允许知识从可见的班级向看不见的班级转移。 简而言之,我们利用CUB和NABirds数据集,从我们关注的一个吵闹的文本中可以看出,在挑战性任务或普遍性 ZSLSL的最大基准上,有几个百分点的艺术状况得到了持续改善。 我们还展示了我们在另外三个数据集( AwA2, aPY, SUN)上对基于属性的ZSL方法的优势。

4
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员