Prevalent techniques in zero-shot learning do not generalize well to other related problem scenarios. Here, we present a unified approach for conventional zero-shot, generalized zero-shot and few-shot learning problems. Our approach is based on a novel Class Adapting Principal Directions (CAPD) concept that allows multiple embeddings of image features into a semantic space. Given an image, our method produces one principal direction for each seen class. Then, it learns how to combine these directions to obtain the principal direction for each unseen class such that the CAPD of the test image is aligned with the semantic embedding of the true class, and opposite to the other classes. This allows efficient and class-adaptive information transfer from seen to unseen classes. In addition, we propose an automatic process for selection of the most useful seen classes for each unseen class to achieve robustness in zero-shot learning. Our method can update the unseen CAPD taking the advantages of few unseen images to work in a few-shot learning scenario. Furthermore, our method can generalize the seen CAPDs by estimating seen-unseen diversity that significantly improves the performance of generalized zero-shot learning. Our extensive evaluations demonstrate that the proposed approach consistently achieves superior performance in zero-shot, generalized zero-shot and few/one-shot learning problems.
翻译:零光学习中的前方技术没有很好地概括到其他相关问题情景。 在这里, 我们提出了一个常规零光、 通用零光和短片学习问题的统一方法。 我们的方法基于一个新颖的“ 调整主方向” (CAPD) 概念, 允许将图像特征多次嵌入语义空间。 根据一个图像, 我们的方法为每个被看见的班级产生一个主要方向 。 然后, 它学会如何将这些方向结合起来, 为每个被看见的班级获取主方向, 这样测试图像的 CAPD 能够与真实班级的语义嵌入一致, 与其他班级相对。 这样, 我们的方法就能够高效、 课堂信息转换到隐蔽班级。 此外, 我们提出一个自动程序, 选择每个不可见的班级最有用的课程, 以便在零光谱学习中实现稳健。 我们的方法可以更新隐蔽的CAPD, 在一个微小的学习情景下, 将少量的不可见的图像用于工作。 此外, 我们的方法可以概括所看到的 CAPD, 通过估计可见的多样性, 显著地改进了普遍零光学方法, 显示我们提出的零光学的零光学问题。