Generalized zero-shot learning (GZSL) aims to recognize objects from both seen and unseen classes, when only the labeled examples from seen classes are provided. Recent feature generation methods learn a generative model that can synthesize the missing visual features of unseen classes to mitigate the data-imbalance problem in GZSL. However, the original visual feature space is suboptimal for GZSL classification since it lacks discriminative information. To tackle this issue, we propose to integrate the generation model with the embedding model, yielding a hybrid GZSL framework. The hybrid GZSL approach maps both the real and the synthetic samples produced by the generation model into an embedding space, where we perform the final GZSL classification. Specifically, we propose a contrastive embedding (CE) for our hybrid GZSL framework. The proposed contrastive embedding can leverage not only the class-wise supervision but also the instance-wise supervision, where the latter is usually neglected by existing GZSL researches. We evaluate our proposed hybrid GZSL framework with contrastive embedding, named CE-GZSL, on five benchmark datasets. The results show that our CEGZSL method can outperform the state-of-the-arts by a significant margin on three datasets. Our codes are available on https://github.com/Hanzy1996/CE-GZSL.
翻译:通用零光学习( GZSL) 旨在识别从可见和看不见的类别中采集的物体, 当只提供显示的类别中的标签示例时, 普通零光学习( GZSL) 的目的是识别从可见和看不见的类别中采集的物体。 最近的特性生成方法学习了一种基因模型, 能够将看不见的类别中缺失的视觉特征综合起来, 以缓解GZSL的数据平衡问题。 但是, 最初的视觉特征空间对于GZSL分类来说并不理想, 因为缺少歧视信息。 为了解决这一问题, 我们建议将生成的生成模型与嵌入模型结合起来, 产生一个混合的 GZSL 框架。 混合GZSL 方法将生成的模型所生成的真实和合成样本都映入嵌入一个嵌入空间, 在那里我们进行最后的GZSL分类。 具体地说, 我们为我们的混合GZSL框架提出了一个对比嵌入的嵌入模型( CE- GZSL) 。 拟议的对比嵌入器不仅能利用了等级监督,, 也可以制成我们现有的CEGSLSL/ 3 数据基 。