We consider the problem of recovering an $n_1 \times n_2$ low-rank matrix with $k$-sparse singular vectors from a small number of linear measurements (sketch). We propose a sketching scheme and an algorithm that can recover the singular vectors with high probability, with a sample complexity and running time that both depend only on $k$ and not on the ambient dimensions $n_1$ and $n_2$. Our sketching operator, based on a scheme for compressed sensing by Li et al. and Bakshi et al., uses a combination of a sparse parity check matrix and a partial DFT matrix. Our main contribution is the design and analysis of a two-stage iterative algorithm which recovers the singular vectors by exploiting the simultaneously sparse and low-rank structure of the matrix. We derive a nonasymptotic bound on the probability of exact recovery. We also show how the scheme can be adapted to tackle matrices that are approximately sparse and low-rank. The theoretical results are validated by numerical simulations.
翻译:我们考虑的是从少量线性测量(Strach)中以美元1美元1美元=2美元=2美元=2美元=2美元=2美元=低端矩阵从少量线性测量(Strach)中回收一个美元=1美元=1美元=2美元=2美元=2美元=2美元=2美元=2美元=2美元=2美元=2美元=2美元=2美元=2美元=2美元=25美元=2美元=2美元=2美元=25美元=2美元=25美元=2美元=25美元=2美元=25美元=2美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=28美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=28美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=28美元=28美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=28美元=28美元=28美元=28美元=25美元=25美元=28美元=28美元=28美元=25美元=25美元=28美元=28美元=28美元=28美元=28美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=25美元=28美元=28美元=28美元=28美元=28美元=28美元=28美元=28美元=28美元=28美元=28美元=28美元=