We consider a general non-linear model where the signal is a finite mixture of an unknown, possibly increasing, number of features issued from a continuous dictionary parameterized by a real nonlinear parameter. The signal is observed with Gaussian (possibly correlated) noise in either a continuous or a discrete setup. We propose an off-the-grid optimization method, that is, a method which does not use any discretization scheme on the parameter space, to estimate both the non-linear parameters of the features and the linear parameters of the mixture. We use recent results on the geometry of off-the-grid methods to give minimal separation on the true underlying non-linear parameters such that interpolating certificate functions can be constructed. Using also tail bounds for suprema of Gaussian processes we bound the prediction error with high probability. Assuming that the certificate functions can be constructed, our prediction error bound is up to log --factors similar to the rates attained by the Lasso predictor in the linear regression model. We also establish convergence rates that quantify with high probability the quality of estimation for both the linear and the non-linear parameters.
翻译:我们考虑一种一般的非线性模型,即信号是未知的、可能增加的、由实际非线性参数所设定的连续字典参数所发出的特征数量有限混合的一种未知的普通非线性模型。在连续或离散的设置中,用高森(可能相关联)噪音观测信号。我们建议一种离网优化方法,即不使用参数空间上的任何离散方案来估计特征的非线性参数和混合物线性参数。我们使用离网方法的几何测量结果,对真正的底部非线性参数进行最小分解,例如可以构建内插证书功能。我们用尾线性线性和非线性参数的底部边框将预测错误以很高的概率捆绑在一起。假设可以构建证书功能,我们的预测误差将记录出 -- 与线性回归模型中Lasso预测器所达到的速率相类似的参数。我们还确定趋同率,以高概率量化线性和非线性参数的估计质量。