In 1981, Neil Immerman described a two-player game, which he called the ``separability game'' \cite{Immerman81}, that captures the number of quantifiers needed to describe a property in first-order logic. Immerman's paper laid the groundwork for studying the number of quantifiers needed to express properties in first-order logic, but the game seemed to be too complicated to study, and the arguments of the paper almost exclusively used quantifier rank as a lower bound on the total number of quantifiers. However, last year Fagin, Lenchner, Regan and Vyas rediscovered the games, provided some tools for analyzing them, and showed how to utilize them to characterize the number of quantifiers needed to express linear orders of different sizes. In this paper, we push forward in the study of number of quantifiers as a bona fide complexity measure by establishing several new results. First we carefully distinguish minimum number of quantifiers from the more usual descriptive complexity measures, minimum quantifier rank and minimum number of variables. Then, for each positive integer $k$, we give an explicit example of a property of finite structures (in particular, of finite graphs) that can be expressed with a sentence of quantifier rank $k$, but where the same property needs $2^{\Omega (k^2)}$ quantifiers to be expressed.
翻译:1981年, Neil Immerman 描述了一个双玩家游戏, 他称之为“ 分化游戏” 的“ 分化游戏 ” \ cite{ Immerman81 }, 捕捉了用来描述一阶逻辑中属性所需的量化数的数量。 Immerman 的论文为研究用一阶逻辑表达属性所需的量化数奠定了基础, 但游戏似乎过于复杂, 并且几乎完全使用文件的量化方位作为量化方总数下限的论点。 但是, 去年 Fagin、 Lechner、 Regan 和 Vyas 重新发现游戏, 提供了分析它们所需的量化数的工具。 Immerman 的论文为研究以一阶逻辑表达属性所需的量化数打下了基础。 在本文中, 我们推进了对量化方数值的研究, 确定一些新的结果。 首先我们仔细区分了最小的量化方位数与更常见的描述性复杂度措施、 最小的量化方位和最小的变量数。 然后, 每一个正数的量化方位结构, 我们给出一个明确的量化的硬值 。