When observations are truncated, we are limited to an incomplete picture of our dataset. Recent methods deal with truncated density estimation problems by turning to score matching, where the access to the intractable normalising constant is not required. We present a novel extension to truncated score matching for a Riemannian manifold. Applications are presented for the von Mises-Fisher and Kent distributions on a two dimensional sphere in $\R^3$, as well as a real-world application of extreme storm observations in the USA. In simulated data experiments, our score matching estimator is able to approximate the true parameter values with a low estimation error and shows improvements over a maximum likelihood estimator.
翻译:当观测中断时,我们仅限于对数据集的不完整图片。最近的方法通过转换到分数匹配处理短密度估计问题,这里不需要使用难以调正的常数。我们展示了一个新扩展,用于短速计分匹配里曼尼多元体。 Von Mises-Fisher 和 Kent 在两个维域的分布应用以$\R__3$进行,以及在美国实际应用极端风暴观测。在模拟数据实验中,我们的分数匹配估计器能够以低估计误差来接近真实参数值,并显示比最大概率估测器的改进。