We address the problem of variable selection in a high-dimensional but sparse mean model, under the additional constraint that only privatised data are available for inference. The original data are vectors with independent entries having a symmetric, strongly log-concave distribution on $\mathbb{R}$. For this purpose, we adopt a recent generalisation of classical minimax theory to the framework of local $\alpha-$differential privacy. We provide lower and upper bounds on the rate of convergence for the expected Hamming loss over classes of at most $s$-sparse vectors whose non-zero coordinates are separated from $0$ by a constant $a>0$. As corollaries, we derive necessary and sufficient conditions (up to log factors) for exact recovery and for almost full recovery. When we restrict our attention to non-interactive mechanisms that act independently on each coordinate our lower bound shows that, contrary to the non-private setting, both exact and almost full recovery are impossible whatever the value of $a$ in the high-dimensional regime such that $n \alpha^2/ d^2\lesssim 1$. However, in the regime $n\alpha^2/d^2\gg \log(d)$ we can exhibit a critical value $a^*$ (up to a logarithmic factor) such that exact and almost full recovery are possible for all $a\gg a^*$ and impossible for $a\leq a^*$. We show that these results can be improved when allowing for all non-interactive (that act globally on all coordinates) locally $\alpha-$differentially private mechanisms in the sense that phase transitions occur at lower levels.


翻译:我们在一个高维但稀少的中值模型中解决变量选择问题,因为有额外限制,即只有精度数据才能进行推断。原始数据是独立条目的矢量,其对称、强烈的对数组合分布在$\mathbb{R}$上。为此目的,我们最近将经典微缩理论的概括化到本地的 $\ alpha-$差异隐私框架。我们提供了在最多为美元且非零坐标由常数 >0美元与非零坐标从美元坐标分离的类别中预期损耗的趋同率的下限和上限。作为对精确恢复和几乎完全恢复而言,我们提出了必要和充分的条件(根据日志系数),当我们把注意力限制在不互动机制上,而每个独立行动则协调我们的较低约束显示,与非私人环境相比,准确和几乎完全恢复速度都是不可能实现的,在高维值制度中(美元==美元=美元=美元/ d=美元),对于整个正值的回收机制来说,这些精确值在正值中是可能的。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月19日
Arxiv
0+阅读 · 2022年8月17日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员