Anchored covariate-adjusted indirect comparisons inform reimbursement decisions where there are no head-to-head trials between the treatments of interest, there is a common comparator arm shared by the studies, and there are patient-level data limitations. Matching-adjusted indirect comparison (MAIC) is the most widely used covariate-adjusted indirect comparison method. MAIC has poor precision and is inefficient when the effective sample size after weighting is small. A modular extension to MAIC, termed two-stage matching-adjusted indirect comparison (2SMAIC), is proposed. This uses two parametric models. One estimates the treatment assignment mechanism in the study with individual patient data (IPD), the other estimates the trial assignment mechanism. The resulting weights seek to balance covariates between treatment arms and across studies. A simulation study provides proof-of-principle in an indirect comparison performed across two randomized trials and explores the use of weight truncation in combination with MAIC for the first time. Despite enforcing randomization and knowing the true treatment assignment mechanism in the IPD trial, 2SMAIC yields improved precision and efficiency with respect to MAIC in all scenarios, while maintaining similarly low levels of bias. The two-stage approach is effective when sample sizes in the IPD trial are low, as it controls for chance imbalances in prognostic baseline covariates between study arms. It is not as effective when overlap between the trials' target populations is poor and the extremity of the weights is high. In these scenarios, truncation leads to substantial precision and efficiency gains but induces considerable bias. The combination of a two-stage approach with truncation produces the highest precision and efficiency improvements.


翻译:在对利息的处理方法之间没有头对头试验的情况下,对偿还决定进行共变调整间接比较,为作出偿还决定提供了依据;在研究中,有一个共同的参照网,有一个共同的参照网;有病人一级的数据限制;匹配调整间接比较(MAIC)是最广泛使用的共变调调整间接比较方法;MAIC在加权后的有效抽样规模小时,其精确度不高,效率也低;提议对MAIC进行模块扩展,称为两阶段匹配调整间接比较(2SMAIC),这使用两个参数模型;一个用个人病人数据(IPD)对研究中的治疗分配机制进行估计,导致对试验分配机制进行其他估计;由此产生的加权力求平衡处理武器和跨研究之间的差异;模拟研究在两次随机试验中进行间接比较,提供原则证明,并探索在第一次与MAIC进行有效抽样比较时使用重量调整;尽管在IPD试验中采用随机调整,但了解真正的治疗方法,但在各种假设中,对MAIC的精确度和效率都有提高;在两次试验中,在实际的精确度上,在两种试算中,其效率为相当低的数值的数值的数值上,在两种试算中,它们之间具有相当的精确的精确性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月19日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员