3D object detection is a key perception component in autonomous driving. Most recent approaches are based on Lidar sensors only or fused with cameras. Maps (e.g., High Definition Maps), a basic infrastructure for intelligent vehicles, however, have not been well exploited for boosting object detection tasks. In this paper, we propose a simple but effective framework - MapFusion to integrate the map information into modern 3D object detector pipelines. In particular, we design a FeatureAgg module for HD Map feature extraction and fusion, and a MapSeg module as an auxiliary segmentation head for the detection backbone. Our proposed MapFusion is detector independent and can be easily integrated into different detectors. The experimental results of three different baselines on large public autonomous driving dataset demonstrate the superiority of the proposed framework. By fusing the map information, we can achieve 1.27 to 2.79 points improvements for mean Average Precision (mAP) on three strong 3d object detection baselines.
翻译:3D天体探测是自动驾驶中的一个关键感知组成部分。 最近的方法大多仅以Lidar传感器为基础,或与相机连接。地图(例如高定义地图)是智能车辆的基本基础设施,但还没有被很好地用于推进物体探测任务。在本文中,我们提出了一个简单而有效的框架――将地图信息整合到现代的3D天体探测器管道中。特别是,我们设计了一个用于HD地图特征提取和聚合的特性Agg模块,以及一个地图Seg模块,作为探测骨干的辅助部分头。我们提议的地图Fusion是独立的探测器,可以很容易地融入不同的探测器。大型公共自主驾驶数据集上的三个不同基线的实验结果显示了拟议框架的优越性。通过使用地图信息,我们可以在三个强的3天体探测基线上实现平均精确度1.27至2.79点的改进。