In visual retrieval systems, updating the embedding model requires recomputing features for every piece of data. This expensive process is referred to as backfilling. Recently, the idea of backward compatible training (BCT) was proposed. To avoid the cost of backfilling, BCT modifies training of the new model to make its representations compatible with those of the old model. However, BCT can significantly hinder the performance of the new model. In this work, we propose a new learning paradigm for representation learning: forward compatible training (FCT). In FCT, when the old model is trained, we also prepare for a future unknown version of the model. We propose learning side-information, an auxiliary feature for each sample which facilitates future updates of the model. To develop a powerful and flexible framework for model compatibility, we combine side-information with a forward transformation from old to new embeddings. Training of the new model is not modified, hence, its accuracy is not degraded. We demonstrate significant retrieval accuracy improvement compared to BCT for various datasets: ImageNet-1k (+18.1%), Places-365 (+5.4%), and VGG-Face2 (+8.3%). FCT obtains model compatibility when the new and old models are trained across different datasets, losses, and architectures.
翻译:在视觉检索系统中,更新嵌入模型需要对每件数据进行重新计算。 这个昂贵的过程被称为回填。 最近, 提出了后向兼容培训( BCT) 的想法。 为了避免回填成本, BCT 修改新模型的培训使其与旧模型的表达方式相容。 但是, BCT 可能会严重阻碍新模型的性能。 在这项工作中, 我们提出了一个新的代表学习模式: 前向兼容培训( FCT ) 。 在FCT 中, 当旧模型经过培训时, 我们还准备一个未来未知的模型版本。 我们提议学习侧面信息, 即每个样本的辅助性功能, 以便于将来更新模型。 要开发一个强大而灵活的模型兼容性框架, 我们将侧面信息与从旧的嵌入到新模型的前瞻性转换结合起来。 新模型的培训没有被修改, 因此其准确性没有降低。 在各种数据集中, 我们展示了与 BCT 相比, 显著的检索准确性改进: imageNet-1k (+18.1%), Plades-365 (+5.4%) 和 VG- FAG- FAS2 (经过培训的旧的兼容性格式和损失)。