We propose a way to learn visual features that are compatible with previously computed ones even when they have different dimensions and are learned via different neural network architectures and loss functions. Compatible means that, if such features are used to compare images, then "new" features can be compared directly to "old" features, so they can be used interchangeably. This enables visual search systems to bypass computing new features for all previously seen images when updating the embedding models, a process known as backfilling. Backward compatibility is critical to quickly deploy new embedding models that leverage ever-growing large-scale training datasets and improvements in deep learning architectures and training methods. We propose a framework to train embedding models, called backward-compatible training (BCT), as a first step towards backward compatible representation learning. In experiments on learning embeddings for face recognition, models trained with BCT successfully achieve backward compatibility without sacrificing accuracy, thus enabling backfill-free model updates of visual embeddings.


翻译:我们建议一种方法来学习与先前计算过的功能相兼容的视觉特征,即使这些特征具有不同的维度,并且通过不同的神经网络架构和损失函数来学习。 兼容意味着, 如果这些特征被用于比较图像, 那么“ 新”特征可以直接与“ 老”特征比较, 这样它们可以被互换使用。 这样视觉搜索系统可以在更新嵌入模型时绕过所有先前看到的图像的新特征的计算, 这是一种称为回填的过程。 后向兼容性对于迅速部署新的嵌入模型至关重要, 这些模型能够利用不断扩大的大型培训数据集和深层学习结构和方法的改进。 我们提出了一个框架来培训嵌入模型, 称为后兼容培训, 作为向后兼容的演示学习的第一步。 在学习嵌入面识别的实验中, 接受 BCT 培训的模型可以在不牺牲准确性的情况下成功实现后向兼容性, 从而使得视觉嵌入模型的回填式更新成为可能。

5
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
53+阅读 · 2019年12月22日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
模式国重实验室21篇论文入选CVPR 2020
专知
30+阅读 · 2020年3月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
模式国重实验室21篇论文入选CVPR 2020
专知
30+阅读 · 2020年3月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员